Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Equine Vet J ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587145

RESUMO

BACKGROUND: Safe, efficacious therapy for treating degenerate deep digital flexor tendon (DDFT) and navicular bone fibrocartilage (NBF) in navicular horses is critically necessary. While archetypal orthobiologic therapies for navicular disease are used empirically, their safety and efficacy are unknown. Mesenchymal stem cell-derived extracellular vesicles (EV) may overcome several limitations of current orthobiologic therapies. OBJECTIVES: To (1) characterise cytokine and growth factor profiles of equine bone marrow mesenchymal stem cell (BM-MSC)-derived extracellular vesicles (BM-EV) and (2) evaluate the in vitro anti-inflammatory and extracellular matrix (ECM) protective potentials of BM-EV on DDFT and NBF explant co-cultures in an IL-1ß inflammatory environment. STUDY DESIGN: In vitro experimental study. METHODS: Cytokines (IL-1ß, IL-6, IL-10, IL-1ra and TNF-α) and growth factors (TGFß1, VEGF, IGF1 and PDGF) in equine BM-EV isolated via ultracentrifugation and precipitation methods were profiled. Forelimb DDFT and NBF explant co-cultures from seven horses were exposed to media alone, or media containing 2 × 109 ± 0.1 × 109 particles/mL or 10 µg/mL BM-EV (BM-EV), 10 ng/mL interleukin-1ß (IL-1ß), or IL-1ß + BM-EV for 48 h. Co-culture media IL-6, TNF-α, MMP-3, MMP-13 concentrations and explant sulphated glycosaminoglycan (sGAG) content were quantified. RESULTS: IL-6, IGF1 and VEGF concentrations were 102.1 (37.61-256.2) and 182.3 (163.1-226.3), 72.3 (8-175.6) and 2.4 (0.1-2.6), 108.3 (38.3-709.1) and 211.4 (189.1-318.2) pg/mL per 2 × 109 ± 0.1 × 109 particles/mL or 10 µg/mL 10 µg of BM-EV isolated via ultracentrifugation and precipitation methods, respectively. Co-culture media MMP-3 in BM-EV- (p = 0.03) and BM-EV + IL-1ß-treated (p = 0.01) groups were significantly lower than the respective media and IL-1ß groups. DDFT explant sGAG content of BM-EV (p = 0.003) and BM-EV + IL-1ß groups were significantly higher compared with IL-1ß group. MAIN LIMITATIONS: Specimen numbers are limited, in vitro model may not replicate clinical case conditions, lack of non-MSC-derived EV control group. CONCLUSIONS: Equine BM-EV contains IL-6 and growth factors, IGF1 and VEGF. The anti-inflammatory and ECM protective potentials of BM-EV were evident as increased IL-6 and decreased MMP-3 concentrations in the DDFT-NBF explant co-culture media. These results support further evaluation of BM-EV as an acellular and 'off-the-shelf' intra-bursal/intrasynovial therapy for navicular pathologies.

2.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686310

RESUMO

Neural injuries disrupt the normal functions of the nervous system, whose complexities limit current treatment options. Because of their enhanced therapeutic effects, neurospheres have the potential to advance the field of regenerative medicine and neural tissue engineering. Methodological steps can pose challenges for implementing neurosphere assemblies; for example, conventional static cultures hinder yield and throughput, while the presence of the necrotic core, time-consuming methodology, and high variability can slow their progression to clinical application. Here we demonstrate the optimization of primary neural cell-derived neurospheres, developed using a high-throughput, stress-free, 3D bioreactor. This process provides a necessary baseline for future studies that could develop co-cultured assemblies of stem cells combined with endothelial cells, and/or biomaterials and nanomaterials for clinical therapeutic use. Neurosphere size and neurite spreading were evaluated under various conditions using Image J software. Primary neural cells obtained from the hippocampi of three-day-old rat pups, when incubated for 24 h in a reactor coated with 2% Pluronic and seeded on Poly-D-Lysine-coated plates establish neurospheres suitable for therapeutic use within five days. Most notably, neurospheres maintained high cell viability of ≥84% and expressed the neural marker MAP2, neural marker ß-Tubulin III, and glial marker GFAP at all time points when evaluated over seven days. Establishing these factors reduces the variability in developing neurospheres, while increasing the ease and output of the culture process and maintaining viable cellular constructs.


Assuntos
Células Endoteliais , Tecido Nervoso , Animais , Ratos , Neurônios , Neuritos , Neuroglia
3.
Polymers (Basel) ; 15(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765540

RESUMO

Neural injuries affect millions globally, significantly impacting their quality of life. The inability of these injuries to heal, limited ability to regenerate, and the lack of available treatments make regenerative medicine and tissue engineering a promising field of research for developing methods for nerve repair. This review evaluates the use of natural and synthetic polymers, and the fabrication methods applied that influence a cell's behavior. Methods include cross-linking hydrogels, incorporation of nanoparticles, and 3D printing with and without live cells. The endogenous cells within the injured area and any exogenous cells seeded on the polymer construct play a vital role in regulating healthy neural activity. This review evaluates the body's local and systemic reactions to the implanted materials. Although numerous variables are involved, many of these materials and methods have exhibited the potential to provide a biomaterial environment that promotes biocompatibility and the regeneration of a physical and functional nerve. Future studies may evaluate advanced methods for modifying material properties and characterizing the tissue-biomaterial interface for clinical applications.

4.
Nanomaterials (Basel) ; 13(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049243

RESUMO

Tissue-engineering technologies have the potential to provide an effective approach to bone regeneration. Based on the published literature and data from our laboratory, two biomaterial inks containing PLGA and blended with graphene nanoparticles were fabricated. The biomaterial inks consisted of two forms of commercially available PLGA with varying ratios of LA:GA (65:35 and 75:25) and molecular weights of 30,000-107,000. Each of these forms of PLGA was blended with a form containing a 50:50 ratio of LA:GA, resulting in ratios of 50:65 and 50:75, which were subsequently mixed with a 0.05 wt% low-oxygen-functionalized derivative of graphene. Scanning electron microscopy showed interconnected pores in the lattice structures of each scaffold. The cytocompatibility of human ADMSCs transduced with a red fluorescent protein (RFP) was evaluated in vitro. The in vivo biocompatibility and the potential to repair bones were evaluated in a critically sized 5 mm mechanical load-bearing segmental femur defect model in rats. Bone repair was monitored by radiological, histological, and microcomputed tomography methods. The results showed that all of the constructs were biocompatible and did not exhibit any adverse effects. The constructs containing PLGA (50:75)/graphene alone and with hADMSCs demonstrated a significant increase in mineralized tissues within 60 days post-treatment. The percentage of bone volume to total volume from microCT analyses in the rats treated with the PLGA + cells construct showed a 50% new tissue formation, which matched that of a phantom. The microCT results were supported by Von Kossa staining.

5.
Front Vet Sci ; 9: 1011905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452146

RESUMO

Regenerative biological therapies using mesenchymal stem cells (MSCs) are being studied and used extensively in equine veterinary medicine. One of the important properties of MSCs is the cells' reparative effect, which is brought about by paracrine signaling, which results in the release of biologically active molecules, which in turn, can affect cellular migration and proliferation, thus a huge potential in wound healing. The objective of the current study was to demonstrate the in vitro and in vivo potentials of equine allogenic bone marrow-derived MSCs for wound healing. Equine bone marrow-derived MSCs from one allogenic donor horse were used. Equine MSCs were previously characterized for their in vitro proliferation, expression of cluster-of-differentiation markers, and trilineage differentiation. MSCs were first evaluated for their migration using an in vitro wound healing scratch assay, and subsequently, the conditioned medium was evaluated for their effect on human fibroblast proliferation. Subsequently, allogenic cells were intradermally injected into full-thickness, cutaneous thoracic wounds of 4 horses. Wound healing was assessed by using 3-D digital imaging and by measuring mRNA expression of pro-and anti-inflammatory markers for 30 days. Using human fibroblasts in an in vitro wound healing assay, we demonstrate a significantly higher healing in the presence of conditioned medium collected from proliferating MSCs than in the presence of medium containing fetal bovine serum. The in vitro effect of MSCs did not translate into a detectable effect in vivo. Nonetheless, we proved that molecularly characterized equine allogenic MSCs do not illicit an immunologic response. Investigations using MSCs derived from other sources (adipose tissue, umbilical cord), or a higher number of MSCs or a compromised animal model may be required to prove the efficacy of equine MSCs in wound healing in vivo.

6.
Pharmaceutics ; 14(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36145582

RESUMO

Graphene-based materials have recently gained attention for regenerating various tissue defects including bone, nerve, cartilage, and muscle. Even though the potential of graphene-based biomaterials has been realized in tissue engineering, there are significantly many more studies reporting in vitro and in vivo data in bone tissue engineering. Graphene constructs have mainly been studied as two-dimensional (2D) substrates when biological organs are within a three-dimensional (3D) environment. Therefore, developing 3D graphene scaffolds is the next clinical standard, yet most have been fabricated as foams which limit control of consistent morphology and porosity. To overcome this issue, 3D-printing technology is revolutionizing tissue engineering, due to its speed, accuracy, reproducibility, and overall ability to personalize treatment whereby scaffolds are printed to the exact dimensions of a tissue defect. Even though various 3D-printing techniques are available, practical applications of 3D-printed graphene scaffolds are still limited. This can be attributed to variations associated with fabrication of graphene derivatives, leading to variations in cell response. This review summarizes selected works describing the different fabrication techniques for 3D scaffolds, the novelty of graphene materials, and the use of 3D-printed scaffolds of graphene-based nanoparticles for bone tissue engineering.

7.
Bioengineering (Basel) ; 9(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36004932

RESUMO

Stem cell therapy for the treatment of tendon injury is an emerging clinical practice in the fields of human and veterinary sports medicine; however, the therapeutic benefit of intralesional transplantation of mesenchymal stem cells in tendonitis cases is not well designed. Questions persist regarding the overall tenogenic potential and efficacy of this treatment alone. In this study, we aimed to isolate a rat mesenchymal stem cell lineage for in vitro and in vivo use, to assess the effects of growth factor exposure in vitro on cell morphology, behavior, and tendon-associated glycoprotein production, and to assess the therapeutic potential of intralesional stem cells, as a function of dose, in vivo. First, rat adipose-derived (rAdMSC) and bone marrow-derived (rBMSC) stem cell lineages were isolated, characterized with flow cytometric analysis, and compared in terms of proliferation (MTS assay) and cellular viability (calcein AM staining). Rat AdMSCs displayed superior proliferation and more homogenous CD 73, CD 44H, and CD 90 expression as compared to rBMSC. Next, the tenogenic differentiation potential of the rAdMSC lineage was tested in vitro through isolated and combined stimulation with reported tenogenic growth factors, transforming growth factor (TGF)-ß3 and connective tissue growth factor (CTGF). We found that the most effective tenogenic factor in terms of cellular morphologic change, cell alignment/orientation, sustained cellular viability, and tendon-associated glycoprotein upregulation was TGFß3, and we confirmed that rAdMSC could be induced toward a tenogenic lineage in vitro. Finally, the therapeutic potential of rAdMSCs as a function of dose was assessed using a rat acute Achilles tendon injury model. Amounts of 5 × 105 (low dose) and 4 × 106 (high dose) were used. Subjectively, on the gross morphology, the rAdMSC-treated tendons exhibited fewer adhesions and less scar tissue than the control tendons; however, regardless of the rAdMSC dose, no significant differences in histological grade or tissue collagen I deposition were noted between the rAdMSC-treated and control tendons. Collectively, rAdMSCs exhibited appropriate stem cell markers and tenogenic potential in vitro, but the clinical efficacy of intralesional implantation of undifferentiated cells in acute tendonitis cases could not be proven. Further investigation into complementary therapeutics or specialized culture conditions prior to implantation are warranted.

8.
Bioengineering (Basel) ; 9(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35877326

RESUMO

Surgical site infections (SSIs) are a common complication following orthopedic surgery. SSIs may occur secondary to traumatic or contaminated wounds or may result from invasive procedures. The development of biofilms is often associated with implanted materials used to stabilize injuries and to facilitate healing. Regardless of the source, SSIs can be challenging to treat. This has led to the development of devices that act simultaneously as local antibiotic delivery vehicles and as scaffolds for tissue regeneration. The goal for the aforementioned devices is to increase local drug concentration in order to enhance bactericidal activity while reducing the risk of systemic side effects and toxicity from the administered drug. The aims of this study were to assess the effect of antibiotic loading of a collagen matrix on the tissue integration of the matrix using a rat mandibular defect model. We hypothesized that the collagen matrix could load and elute gentamicin, that the collagen matrix would be cytocompatible in vitro, and that the local delivery of a high dose of gentamicin via loaded collagen matrix would negatively impact the tissue-scaffold interface. The results indicate that the collagen matrix could load and elute the antimicrobial gentamicin and that it was cytocompatible in vitro with or without the presence of gentamicin and found no significant impact on the tissue-scaffold interface when the device was loaded with a high dose of gentamicin.

9.
Tissue Eng Part B Rev ; 28(5): 1022-1034, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34693743

RESUMO

Various abnormalities of the tongue, including cancers, commonly require surgical removal to sequester growth and metastasis. However, even minor resections can affect functional outcomes such as speech and swallowing, thereby reducing quality of life. Surgical resections alone create volumetric muscle loss whereby muscle tissue cannot self-regenerate within the tongue. In these cases, the tongue is reconstructed typically in the form of autologous skin flaps. However, flap reconstruction has many limitations and unfortunately is the primary option for oral and reconstructive surgeons to treat tongue defects. The alternative, but yet undeveloped, strategy for tongue reconstruction is regenerative medicine, which widely focuses on building new organs with stem cells. Regenerative medicine has successfully treated many tissues, but research has inadequately addressed the tongue as a vital organ in need of tissue engineering. In this review, we address the current standard for tongue reconstruction, the cellular mechanisms of muscle cell development, and the stem cell studies that have attempted muscle engineering within the tongue. Until now, no review has focused on engineering the tongue with regenerative medicine, which could guide innovative strategies for tongue reconstruction. Impact statement Unlike other bodily organs, the current literature has inadequately addressed the tongue as a vital organ in need of tissue engineering. Therefore, this review seeks to highlight the clinical challenges of tongue reconstruction, alternative tissue engineering strategies, and to summarize the studies involving muscle regeneration within the tongue. This information will guide maxillofacial surgeons and tissue engineering scientists to pursue innovative strategies that alleviate volumetric muscle loss in the tongue.


Assuntos
Procedimentos de Cirurgia Plástica , Neoplasias da Língua , Humanos , Neoplasias da Língua/cirurgia , Qualidade de Vida , Projetos de Pesquisa , Língua/cirurgia , Músculos/cirurgia , Regeneração
10.
Pharmaceutics ; 13(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34959426

RESUMO

A core challenge in the field of tissue engineering is the ability to establish pipeline workflows for the design and characterization of scaffold technologies with clinically translatable attributes. The parallel development of biomaterials and stem cell populations represents a self-sufficient and streamlined approach for establishing such a pipeline. In the current study, rat dental pulp stem cell (rDPSC) populations were established to assess functionalized polycaprolactone (PCL) constructs. Initial optimization and characterization of rDPSC extraction and culture conditions confirmed that cell populations were readily expandable and demonstrated surface markers associated with multi-potency. Subset populations were transduced to express DsRed fluorescent protein as a mechanism of tracking both cells and cell-derived extracellular matrix content on complex scaffold architecture. Thermoplastic constructs included reduced graphene oxide (rGO) as an additive to promote cellular attachment and were further modified by surface etching a weak acetic acid solution to roughen surface topographical features, which was observed to dramatically improve cell surface coverage in vitro. Based on these data, the modified rGO-functionalized PCL constructs represent a versatile platform for bone tissue engineering, capable of being applied as a standalone matrix or in conjunction with bio-active payloads such as DPSCs or other bio-inks.

11.
J Nanobiotechnology ; 19(1): 285, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551771

RESUMO

BACKGROUND: In the last decade, graphene surfaces have consistently supported osteoblast development of stem cells, holding promise as a therapeutic implant for degenerative bone diseases. However, until now no study has specifically examined the genetic changes when stem cells undergo osteogenic differentiation on graphene. RESULTS: In this study, we provide a detailed overview of gene expressions when human mesenchymal stem cells (MSCs) derived from either adipose tissue (AD-MSCs) or bone marrow (BM-MSCs), are cultured on graphene. Genetic expressions were measured using osteogenic RT2 profiler PCR arrays and compared either over time (7 or 21 days) or between each cell source at each time point. Genes were categorized as either transcriptional regulation, osteoblast-related, extracellular matrix, cellular adhesion, BMP and SMAD signaling, growth factors, or angiogenic factors. Results showed that both MSC sources cultured on low oxygen graphene surfaces achieved osteogenesis by 21 days and expressed specific osteoblast markers. However, each MSC source cultured on graphene did have genetically different responses. When compared between each other, we found that genes of BM-MSCs were robustly expressed, and more noticeable after 7 days of culturing, suggesting BM-MSCs initiate osteogenesis at an earlier time point than AD-MSCs on graphene. Additionally, we found upregulated angiogenic markers in both MSCs sources, suggesting graphene could simultaneously attract the ingrowth of blood vessels in vivo. Finally, we identified several novel targets, including distal-less homeobox 5 (DLX5) and phosphate-regulating endopeptidase homolog, X-linked (PHEX). CONCLUSIONS: Overall, this study shows that graphene genetically supports differentiation of both AD-MSCs and BM-MSCs but may involve different signaling mechanisms to achieve osteogenesis. Data further demonstrates the lack of aberrant signaling due to cell-graphene interaction, strengthening the application of specific form and concentration of graphene nanoparticles in bone tissue engineering.


Assuntos
Medula Óssea , Diferenciação Celular , Grafite/metabolismo , Células-Tronco Mesenquimais , Osteogênese/fisiologia , Transdução de Sinais , Tecido Adiposo/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos
12.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203758

RESUMO

Synovial fluid contains cytokines, growth factors and resident mesenchymal stem cells (MSCs). The present study aimed to (1) determine the effects of autologous and allogeneic synovial fluid on viability, proliferation and chondrogenesis of equine bone marrow MSCs (BMMSCs) and (2) compare the immunomodulatory properties of equine synovial fluid MSCs (SFMSCs) and BMMSCs after stimulation with interferon gamma (INF-γ). To meet the first aim of the study, the proliferation and viability of MSCs were evaluated by MTS and calcein AM staining assays. To induce chondrogenesis, MSCs were cultured in a medium containing TGF-ß1 or different concentrations of synovial fluid. To meet the second aim, SFMSCs and BMMSCs were stimulated with IFN-γ. The concentration of indoleamine-2,3-dioxygenase (IDO) and nitric oxide (NO) were examined. Our results show that MSCs cultured in autologous or allogeneic synovial fluid could maintain proliferation and viability activities. Synovial fluid affected chondrocyte differentiation significantly, as indicated by increased glycosaminoglycan contents, compared to the chondrogenic medium containing 5 ng/mL TGF-ß1. After culturing with IFN-γ, the conditioned media of both BMMSCs and SFMSCs showed increased concentrations of IDO, but not NO. Stimulating MSCs with synovial fluid or IFN-γ could enhance chondrogenesis and anti-inflammatory activity, respectively, suggesting that the joint environment is suitable for chondrogenesis.


Assuntos
Condrogênese/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Interferon gama/farmacologia , Células-Tronco Mesenquimais/imunologia , Líquido Sinovial/metabolismo , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Cavalos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Óxido Nítrico/metabolismo
13.
Pharmaceuticals (Basel) ; 13(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114710

RESUMO

The field of regenerative medicine utilizes a wide array of technologies and techniques for repairing and restoring function to damaged tissues. Among these, stem cells offer one of the most potent and promising biological tools to facilitate such goals. Implementation of mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) offer varying advantages based on availability and efficacy in the target tissue. The focus of this review is to discuss characteristics of these three subset stem cell populations and examine their utility in tissue engineering. In particular, the development of therapeutics that utilize cell-based approaches, divided by germinal layer to further assess research targeting specific tissues of the mesoderm, ectoderm, and endoderm. The combinatorial application of MSCs, iPSCs, and ESCs with natural and synthetic scaffold technologies can enhance the reparative capacity and survival of implanted cells. Continued efforts to generate more standardized approaches for these cells may provide improved study-to-study variations on implementation, thereby increasing the clinical translatability of cell-based therapeutics. Coupling clinically translatable research with commercially oriented methods offers the potential to drastically advance medical treatments for multiple diseases and injuries, improving the quality of life for many individuals.

14.
Int J Nanomedicine ; 15: 2501-2513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368037

RESUMO

PURPOSE: The extracellular matrix (ECM) labyrinthine network secreted by mesenchymal stem cells (MSCs) provides a microenvironment that enhances cell adherence, proliferation, viability, and differentiation. The potential of graphene-based nanomaterials to mimic a tissue-specific ECM has been recognized in designing bone tissue engineering scaffolds. In this study, we investigated the expression of specific ECM proteins when human fat-derived adult MSCs adhered and underwent osteogenic differentiation in the presence of functionalized graphene nanoparticles. METHODS: Graphene nanoparticles with 6-10% oxygen content were prepared and characterized by XPS, FTIR, AFM and Raman spectroscopy. Calcein-am and crystal violet staining were performed to evaluate viability and proliferation of human fat-derived MSCs on graphene nanoparticles. Alizarin red staining and quantitation were used to determine the effect of graphene nanoparticles on osteogenic differentiation. Finally, immunofluorescence assays were used to investigate the expression of ECM proteins during cell adhesion and osteogenic differentiation. RESULTS: Our data show that in the presence of graphene, MSCs express specific integrin heterodimers and exhibit a distinct pattern of the corresponding bone-specific ECM proteins, primarily fibronectin, collagen I and vitronectin. Furthermore, MSCs undergo osteogenic differentiation spontaneously without any chemical induction, suggesting that the physicochemical properties of graphene nanoparticles might trigger the expression of bone-specific ECM. CONCLUSION: Understanding the cell-graphene interactions resulting in an osteogenic niche for MSCs will significantly improve the application of graphene nanoparticles in bone repair and regeneration.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Grafite/farmacologia , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Integrinas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Oxigênio/química , Espectroscopia Fotoeletrônica , Multimerização Proteica
15.
Stem Cells Int ; 2020: 8142938, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399052

RESUMO

BACKGROUND: Due to restorative concerns, bone regenerative therapies have garnered much attention in the field of human oral/maxillofacial surgery. Current treatments using autologous and allogenic bone grafts suffer from inherent challenges, hence the ideal bone replacement therapy is yet to be found. Establishing a model by which MSCs can be placed in a clinically acceptable bone defect to promote bone healing will prove valuable to oral/maxillofacial surgeons. METHODS: Human adipose tissue-derived MSCs were seeded onto Gelfoam® and their viability, proliferation, and osteogenic differentiation was evaluated in vitro. Subsequently, the construct was implanted in a rat maxillary alveolar bone defect to assess in vivo bone healing and regeneration. RESULTS: Human MSCs were adhered, proliferated, and uniformly distributed, and underwent osteogenic differentiation on Gelfoam®, comparable with the tissue culture surface. Data confirmed that Gelfoam® could be used as a scaffold for cell attachment and a delivery vehicle to implant MSCs in vivo. Histomorphometric analyses of bones harvested from rats treated with hMSCs showed statistically significant increase in collagen/early bone formation, with cells positive for osteogenic and angiogenic markers in the defect site. This pattern was visible as early as 4 weeks post treatment. CONCLUSIONS: Xenogenically implanted human MSCs have the potential to heal an alveolar tooth defect in rats. Gelfoam®, a commonly used clinical biomaterial, can serve as a scaffold to deliver and maintain MSCs to the defect site. Translating this strategy to preclinical animal models provides hope for bone tissue engineering.

16.
Biores Open Access ; 9(1): 37-50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117598

RESUMO

Effective graft technologies for bone repair have been a primary focus in the field of bone tissue engineering. We have previously fabricated and examined a nanocomposite composed of polyurethane, nano-hydroxyapatite, and decellularized bone particles, which demonstrated osteobiologic characteristics. To evaluate the underlying mechanisms of this biomaterial, human adipose-derived mesenchymal stem cell seeded scaffolds were assessed using a combinatorial approach of transcriptomic and metabolomic analyses. Data from osteogenic and signal transduction polymerase chain reaction arrays and small molecule abundances, measured through liquid chromatography-mass spectrometry, were cross-examined using Integrated Molecular Pathway Level Analysis, Database for Annotation, Visualization, and Integrated Discovery, and ConsensusPathDB online tools to generate a fundamental collection of scaffold-influenced pathways. Results demonstrated upregulation of key osteogenic, cellular adhesion cell signaling markers and indicated that Hedgehog and Wnt signaling pathways were primary candidates for the osteobiologic mechanisms of the scaffold design. The detection of complimentary metabolites, such as ascorbate, further indicates that scaffolds generate intricate cellular environments, promoting cell attachment and subsequent osteodifferentiation.

17.
Front Surg ; 7: 601244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33409291

RESUMO

The interface between a surgical implant and tissue consists of a complex and dynamic environment characterized by mechanical and biological interactions between the implant and surrounding tissue. The implantation process leads to injury which needs to heal over time and the rapidity of this process as well as the property of restored tissue impact directly the strength of the interface. Bleeding is the first and most relevant step of the healing process because blood provides growth factors and cellular material necessary for tissue repair. Integration of the implants placed in poorly vascularized tissue such as articular cartilage is, therefore, more challenging than compared with the implants placed in well-vascularized tissues such as bone. Bleeding is followed by the establishment of a provisional matrix that is gradually transformed into the native tissue. The ultimate goal of implantation is to obtain a complete integration between the implant and tissue resulting in long-term stability. The stability of the implant has been defined as primary (mechanical) and secondary (biological integration) stability. Successful integration of an implant within the tissue depends on both stabilities and is vital for short- and long-term surgical outcomes. Advances in research aim to improve implant integration resulting in enhanced implant and tissue interface. Numerous methods have been employed to improve the process of modifying both stability types. This review provides a comprehensive discussion of current knowledge regarding implant-tissue interfaces within bone and cartilage as well as novel approaches to strengthen the implant-tissue interface. Furthermore, it gives an insight into the current state-of-art biomechanical testing of the stability of the implants. Current knowledge reveals that the design of the implants closely mimicking the native structure is more likely to become well integrated. The literature provides however several other techniques such as coating with a bioactive compound that will stimulate the integration and successful outcome for the patient.

18.
Drug Metab Rev ; 51(4): 533-544, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31577468

RESUMO

Development of effective and cost-efficient bone tissue engineering grafts has been the key area of research for regenerative medicine, yet an ideal grafting material has remained elusive due in large part to the highly dynamic nature of bone. A wide array of materials, both natural and synthetic, have been implemented as potential candidates for commercially available products, yet the gold standard for grafting material still remains autogenous bone. We review currently commercially available bone graft materials and relevant graft characteristics that impact the effectiveness of tissue repair, emphasizing the advantages and disadvantages of materials based on composition and origin. Examined materials were selected through a web-based search for readily accessible and clinically applicable graft materials. Grafts were then categorized according to material source to examine advantages and disadvantages associated with allogenic, xenogeneic, synthetic materials. Lastly, the application of bioactive molecules onto these basal grafts is explored to illustrate the enhancement and regulative capacity of these additives on traditional osteobiologic materials.


Assuntos
Substitutos Ósseos , Transplante Ósseo , Animais , Bioprótese , Humanos , Alicerces Teciduais
19.
PLoS One ; 14(10): e0223771, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618281

RESUMO

The purpose of this study was to quantitatively assess gait characteristics and weight-bearing forces during ambulation in goats free of lameness using a pressure-sensing walkway as a biometric tool for stride, gait, and force analysis. Forty-six non-lame adult goats ranging in age from 5 to 6 years, mixed-breeds, and with a mean body weight of 52 ± 7.1 kgs were used. Goats were trained to walk over a pressure-sensing walkway. Data for analysis was collected on 2 different days, 3 days apart. On each day, 2 to 5 walking passes, in the same direction, were captured for each goat. Data from 2 valid passes meeting the criteria for consistent walking gait on each day were averaged then used for analysis. Analysis was performed, including the day-effect, for stride, gait, and force characteristics. Of the 46 goats enrolled in the study, complete data sets were achieved in 33 (72%) goats. Gait biometrics were similar among the assessment days; therefore, all data was pooled for the purpose of characterizing data for individual limb and biometric parameter comparisons at the individual goat level. Statistical analysis revealed that no difference within the paired limbs, and that there were significant differences between the front limbs and hind limbs. Maximum force and maximum peak pressure were significantly greater for the front limbs as compared with the hind limbs (p < 0.001). Based on the results, gait and force characteristics can be consistently measured in goats using a pressure-sensing walkway during a consistent walking gait. Goats apply greater force to the forelimbs during the weight-bearing phase of stride as compared with the hind limbs. The use of objective assessment tools is expected to improve the ability of researchers and clinicians to monitor changes in weight bearing and gait and will contribute to improved animal welfare.


Assuntos
Análise da Marcha/instrumentação , Marcha/fisiologia , Cabras/fisiologia , Animais , Biometria , Feminino , Membro Anterior/fisiologia , Análise da Marcha/veterinária , Membro Posterior/fisiologia , Masculino , Suporte de Carga
20.
Nanomaterials (Basel) ; 9(7)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323847

RESUMO

Gold nanosystems have been investigated extensively for a variety of applications, from specific cancer cell targeting to tissue regeneration. Specifically, a recent and exciting focus has been the gold nanosystems' interface with neuronal biology. Researchers are investigating the ability to use these systems neuronal applications ranging from the enhancement of stem cell differentiation and therapy to stimulation or inhibition of neuronal activity. Most of these new areas of research are based on the integration of the plasmonic properties of such nanosystems into complex synthetic extracellular matrices (ECM) that can interact and affect positively the activity of neuronal cells. Therefore, the ability to integrate the plasmonic properties of these nanoparticles into multidimensional and morphological structures to support cellular proliferation and activity is potentially of great interest, particularly to address medical conditions that are currently not fully treatable. This review discusses some of the promising developments and unique capabilities offered by the integration of plasmonic nanosystems into morphologically complex ECM devices, designed to control and study the activity of neuronal cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA